일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 언어모델
- 자연어처리
- 클라우드
- chatGPT
- 미국석사
- MSCS
- MAB
- AWS
- BERT이해
- 머신러닝 파이프라인
- docker
- MLOps
- Collaborative Filtering Bandit
- llm
- 메타버스
- BANDiT
- 네트워크
- BERT
- aws자격증
- COFIBA
- nlp
- 중국플랫폼
- 플랫폼
- 머신러닝
- 추천시스템
- RecSys
- transformer
- 클라우드자격증
- HTTP
- TFX
- Today
- Total
목록거대언어모델 (2)
Julie의 Tech 블로그
* 이 글은 아래 아티클을 한글로 의역한 내용을 담고 있습니다. https://blog.gopenai.com/how-to-speed-up-llms-and-use-100k-context-window-all-tricks-in-one-place-ffd40577b4c The Secret Sauce behind 100K context window in LLMs: all tricks in one place tldr; techniques to speed up training and inference of LLMs to use large context window up to 100K input tokens during training and… blog.gopenai.com 배경 요즈음 등장하는 LLM의 context ..
suite of LLMOps tool built for the development of LLM-powered applications Weight and Biases는 wandb라는 패키지를 제공하고 있다. 본래 이 라이브러리는 MLOps용으로 TensorBoard와 유사하게 metric들이 학습과정에서 어떻게 변화하는지를 표현해주는 대시보드 기능을 제공한다. W&B Prompts는 LLM에서 있었던 input, output 그리고 파라미터 값들, 결과가 성공적이었는지/실패였는지 등을 포함하여 편리하게 트래킹할 수 있도록 대시보드를 제공한다. Trace Timeline: LLM에서의 각 execution 스텝과 상태를 그래프 형태로 표현, 클릭해서 누르고 보면 좀 더 자세하게 parameter값이나 어디..