일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 클라우드자격증
- 자연어처리
- transformer
- 추천시스템
- nlp
- BANDiT
- 머신러닝 파이프라인
- BERT이해
- AWS
- 메타버스
- Collaborative Filtering Bandit
- MAB
- HTTP
- TFX
- 미국석사
- aws자격증
- 네트워크
- BERT
- chatGPT
- 플랫폼
- MSCS
- 클라우드
- docker
- RecSys
- 중국플랫폼
- llm
- MLOps
- COFIBA
- 언어모델
- 머신러닝
- Today
- Total
목록BERT란 (2)
Julie의 Tech 블로그
BERT는 뛰어난 성능을 보이지만 아이러니하게도 어떤 요소로 인해 그러한 성능이 발휘되는지에 대해서는 정확히 판별할 수 없는 상황이다. 모델이 문맥을 이해하는 듯 하여 언어적인 지식을 습득하는 것 같은데, 파라미터 수와 모델의 depth로 인해 워낙 큰 모델이다보니 어떤 특성을 갖는지 분석하기가 어렵다. 따라서 BERT와 관련하여 연구된 논문 150가지 이상을 리뷰한 또 다른 논문이 등장하게 된다. 그 논문이 BERTology인데, 이 논문은 아래와 같은 내용을 중점적으로 다룬다. BERT 연구가 어떻게 진행되었고, 진행되고 있는지 BERT가 어떻게 동작하는지, 어떤 정보를 학습하는지, input이 어떻게 represent되는지, 파라미터 거대화(overparameterization issue)와 그..
BERT는 Bidirectional Encoder Representations from Transformer로서 기존 Transformer 모델의 인코더만을 채택하여 사용한다. 논문에서는 Transformer의 인코더와 BERT의 인코더가 크게 다르지 않다고 언급하고 있어 BERT의 특징인 'Bidirectionality'에 대해서 중점적으로 이야기해볼 것이다. BERT는 기존의 NLP 모델들이 'Unidirectional(단방향)'했다는 것과 다르게 양방향성을 띄고 있다. 이를 예시를 들어 설명하면 아래와 같다. I can't trust you. They have no trust left for their friends. He has a trust fund. 여기서 BERT는 다른 모델들과 ..