일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- docker
- 네트워크
- transformer
- 미국석사
- aws자격증
- BANDiT
- 클라우드자격증
- 추천시스템
- MAB
- 머신러닝 파이프라인
- AWS
- BERT이해
- 자연어처리
- Collaborative Filtering Bandit
- TFX
- COFIBA
- MLOps
- 클라우드
- 플랫폼
- 언어모델
- 메타버스
- HTTP
- chatGPT
- llm
- 머신러닝
- MSCS
- BERT
- RecSys
- 중국플랫폼
- nlp
- Today
- Total
목록NLP for RecSys (2)
Julie의 Tech 블로그
이번 글은 BERT4Rec에 이어서 NLP 모델인 Transformer가 추천시스템에 어떻게 적용될 수 있는지 연구한 논문에 대해 다뤄볼 것이다. 이번 논문은 저번 BERT4Rec이 순차적인(Sequential) 추천시스템에 적용된 것에서 더 나아가 Session-based, 즉 좀 더 짧은 인풋인 세션 단위에서의 추천시스템에 초점을 두고 있다. 요즈음의 이커머스, 뉴스, 혹은 미디어 포털에서의 유저 상호작용은 굉장히 짧은 형태이다. 이 배경에는 쿠키 수집 제한 정책과 같은 법적인 이슈도 있지만 큰 이유로는 유저의 선호가 다이나믹하게 바뀌기 때문이다. 본 논문은 NVIDIA에서 발표하였으며, BERT4Rec과 다르게 방법론을 다룬 논문이 아니라 직접 모델을 학습하여 배포한 오픈소스 라이브러리를 소개하고 ..
추천시스템과 자연어처리 모델은 함께 떠올리기 쉽지 않다. 우리가 통상 생각하는 추천시스템은 아이템과 유저를 대상으로 하는데, 자연어처리 모델은 언어를 대상으로 하기 때문이다. 하지만 몇몇 사람들은 자연어처리 모델을 추천시스템에 적용해보기를 시도했다. 그 이유는 유저가 순차적인 이벤트(혹은 activity)를 발생시키는 경우 순차성을 지닌 텍스트 데이터와 유사한 속성을 지닌 데이터로 여길 수 있기 때문이다. 그 외에도 유저의 반응(implicit 혹은 explicit feedback)이 희소(sparse)하다는 것과 one-hot encoding으로 데이터를 임베딩한다는 것이 유사점으로 꼽을 수 있다. 딥러닝 언어 모델이 점차적으로 발전해나가면서 순차적인(Sequential) 추천 모델도 함께 발전..