일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 머신러닝
- AWS
- MSCS
- BANDiT
- 메타버스
- 미국 개발자 취업
- maang
- 클라우드자격증
- transformer
- 추천시스템
- 자연어처리
- llm
- MAB
- BERT
- MLOps
- 미국석사
- TFX
- 네트워크
- RecSys
- BERT이해
- chatGPT
- HTTP
- swe취업
- 클라우드
- 중국플랫폼
- 언어모델
- docker
- 플랫폼
- nlp
- 합격후기
- Today
- Total
목록언어모델 (8)
SWE Julie's life

Quantization은 LLM이 화제가 되기 전에도 이미 모델의 complexity 나 cost를 줄이고자 하는 노력의 일환으로 연구가 되어왔던 분야이다. 물론 더 가벼운/저렴한 모델을 만들 때 quantization만이 유일한 대응책은 아니다. 모델 아키텍쳐 경량화 등의 방법도 있겠지만 quantization이 그 중에서도 가장 전후차이가 크다고 한다. LLM 모델들의 성능이 상승함에 따라 점차 일반화/서비스화 고민들이 많아지는 가운데, 갖춰지지 않은 대중적인 환경에서도 모델을 활용할 수 있는 방법에 대한 고민이 많아지는 듯 하다. 과거엔 IoT의 성장과 edge computing에 대한 관심도 한 몫했던 것 같다. 그럼 이번 글은 LLM에서 뜨거운 감자가 되고 있는 Quantization에 대해 간..

최근 ChatGPT의 흥행 이후 많은 LLM 기반 패키지들이 생겨나고 있다. 마치 물이 들어오기를 기다리고 있었던 선박들 마냥 기존의 라이브러리를 확장해서 오픈 소스로 공개하기도하고, 기존 서비스에 extension으로 확장해서 사용할 수 있게끔 기능을 제공하는 등 LLM ecosystem이 더 풍부해지고 있다. 그 중에서도 오늘 글은 LangChain이란 LLM으로 E2E Application을 개발할 수 있도록 해주는 프레임워크에 대해 다뤄볼 것이다. 개인적으로 독스나 코드를 보며 여러 방면에서 가려운 곳을 정확히 긁어주고 있어 감동(?)받았었다. LangChain은 여러 모듈로 구성되어있는데, 그 모듈들로 Application을 아래와 같이 확장해나갈 수 있다. LLMs: LM에 input을 넣어 ..