일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- aws자격증
- RecSys
- HTTP
- docker
- 플랫폼
- 머신러닝 파이프라인
- MLOps
- 머신러닝
- 자연어처리
- 추천시스템
- 네트워크
- 클라우드
- 메타버스
- MSCS
- 언어모델
- 중국플랫폼
- Collaborative Filtering Bandit
- chatGPT
- AWS
- BERT이해
- TFX
- BERT
- nlp
- 클라우드자격증
- llm
- BANDiT
- COFIBA
- MAB
- 미국석사
- transformer
- Today
- Total
목록NLP for RecSys (2)
Julie의 Tech 블로그
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/on6ZW/btrVpfochgQ/K9TZIhjC69EKweliDBJfG0/img.png)
이번 글은 BERT4Rec에 이어서 NLP 모델인 Transformer가 추천시스템에 어떻게 적용될 수 있는지 연구한 논문에 대해 다뤄볼 것이다. 이번 논문은 저번 BERT4Rec이 순차적인(Sequential) 추천시스템에 적용된 것에서 더 나아가 Session-based, 즉 좀 더 짧은 인풋인 세션 단위에서의 추천시스템에 초점을 두고 있다. 요즈음의 이커머스, 뉴스, 혹은 미디어 포털에서의 유저 상호작용은 굉장히 짧은 형태이다. 이 배경에는 쿠키 수집 제한 정책과 같은 법적인 이슈도 있지만 큰 이유로는 유저의 선호가 다이나믹하게 바뀌기 때문이다. 본 논문은 NVIDIA에서 발표하였으며, BERT4Rec과 다르게 방법론을 다룬 논문이 아니라 직접 모델을 학습하여 배포한 오픈소스 라이브러리를 소개하고 ..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/7IoRx/btrVkXNCgAj/bwVDiFKQNce87FnGC40xU1/img.png)
추천시스템과 자연어처리 모델은 함께 떠올리기 쉽지 않다. 우리가 통상 생각하는 추천시스템은 아이템과 유저를 대상으로 하는데, 자연어처리 모델은 언어를 대상으로 하기 때문이다. 하지만 몇몇 사람들은 자연어처리 모델을 추천시스템에 적용해보기를 시도했다. 그 이유는 유저가 순차적인 이벤트(혹은 activity)를 발생시키는 경우 순차성을 지닌 텍스트 데이터와 유사한 속성을 지닌 데이터로 여길 수 있기 때문이다. 그 외에도 유저의 반응(implicit 혹은 explicit feedback)이 희소(sparse)하다는 것과 one-hot encoding으로 데이터를 임베딩한다는 것이 유사점으로 꼽을 수 있다. 딥러닝 언어 모델이 점차적으로 발전해나가면서 순차적인(Sequential) 추천 모델도 함께 발전..